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Abstract
We consider inelastic light scattering (a Raman process) in non-fully
symmetrical channels in metals with disorder and doped semiconductors. Due
to the screened Coulomb interaction between electrons moving in the random
field of impurities, the electronic excitations with relatively large momenta
contribute to the Raman spectra. The physics of this effect is related to the
physics of the inelastic collisions of electrons that arises due to the same
interaction. We show that the contribution of the finite-momentum excitations
can be regarded as a manifestation of the weak localization of carriers due to
the disorder.

1. Introduction

In an inelastic light scattering (Raman) experiment, a laser beam at frequency ω illuminates the
surface of a solid, and the spectrum of the scattered light is analysed as a function of the shift of
the light frequency in the scattering process, �. The measured value in this case is the spectral
density of the scattered light ρ(�), which is the number of the counted scattered photons in
a given small energy interval per time unit. Typically, ρ(�) for metals and semiconductors
consists of a continuum (a smooth function of �) and some peaks, corresponding to phonon
excitations. In this paper we will be interested in the continua which are formed by different
kinds of low-energy electronic excitation [1, 2]. It is usually assumed that the momenta of the
Raman-active excitations are Q R ∼ 2π max(1/λ, 1/δ), where δ is the light penetration depth,
and λ is the photon wavelength (we put h̄ ≡ 1). Q R defined in this way is more than two
orders of magnitude smaller than the Fermi momentum kF . This smallness often allows one
to assume that these excitations have zero momenta and to put Q = 0 for the excitations in
the calculations of Raman response. The effect of such small momentum transfer caused by
the finite penetration depth in metals has been investigated by Falkovsky [3]. In the approach
of [3], light is scattered by the electrons moving at the large spatial scale δ � � diffusively
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rather than ballistically (� is the electron free path). The energy of these excitations is given
by ∼DQ2, and the corresponding Raman shift is of the order of Dδ−2, where the diffusion
coefficient D = v2

Fτ/3 (vF is the Fermi velocity, τ is the electron elastic relaxation time
assumed to be momentum independent, and � = vFτ ). However, in the presence of disorder,
the momentum conservation rule leading to small Q R is broken. The role of the breakdown
was for the first time recognized by Shuker and Gammon [4], who considered Raman scattering
by atomic vibrations in glasses. In accordance with the approach of [4], the spatial coherence
of the vibrations is characterized by a length 	 estimated to be approximately 400 Å—that
is, about 0.1λ. All vibrations with momenta in the range 0 � Q < 2π/	 contribute almost
equally to the Raman response, and the spectral density of scattered light has no contribution
distinguishable from that of the Q R ∼ 2π/λ excitations. On the basis of their consideration,
Shuker and Gammon calculated the spectral density of scattered light, thereby explaining a
Raman band extending up to 600 cm−1.

Itai [5] considered light scattering by coupled electron–phonon excitations in metals
with impurities and showed that, due to conservation of total momentum in the Raman
process, Raman-active excitations can consist of electron–hole pairs and phonons with opposite
finite momenta. The purpose of this paper is to consider the effect of excitations with
Q � 2π max(1/δ, 1/λ) arising due to electron–electron interaction on electronic Raman
scattering in non-fully symmetrical polarizations in three-dimensional (3D) metals and doped
semiconductors with disorder. We shall refer to such excitations as ‘finite-momentum’
excitations and show that the influence of disorder on electronic Raman scattering is different
from the effects discussed for the vibrations in [4], since there is still a distinguishable
contribution from the zero-momentum excitations. This is valid even when the scale at which
the momentum conservation is broken—that is, �—is so small that � ∼ k−1

F . In the latter case
the finite-Q excitations lead to corrections to the main Q = 0 term which can be considered
within the weak-localization theory [6]. The corrections are relatively small since the weak-
localization effects are small in 3D conductors.

2. Finite-momentum Raman processes

The inelastic light scattering can be considered as a process of dissipation of the energy of
the external electromagnetic field in a solid due to the excitation of quasiparticles there. The
frequency of the corresponding effective external perturbation, driving the system and leading
to the dissipation, however, is not the frequency of the incident or scattered light, but their
difference �. A theory of the Raman scattering in metals with impurities for Q R = 0 was
developed by Zawadowski and Cardona [2]. In this case the real part of the energy transfer
to diffusing electrons, which is of the order of DQ2, tends to zero, and, therefore, the Raman
intensity at finite frequencies rises due to the imaginary part of the electron self-energy i/τ . The
effective Hamiltonian describing the Raman process as a response to an external perturbation
can be written as [2]

ĤR =
∑
k,σ

γkĉ+
k,σ ĉk,σ , (1)

where γk is a Raman vertex depending on the polarization of the incident and the scattered light,
the light frequency, and the crystal band-structure [7], ĉ+

k and ĉk are the electron creation and
annihilation operators, and σ is the spin projection. It is assumed that the photon momentum
is equal to zero in ĤR. The light is scattered by the effective density fluctuations arising
due to the k-dependence of γk, which is analogous to the mechanism of Raman scattering
by the intervalley charge density fluctuations in multi-valley semiconductors [8]. Below, we
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consider the case of non-fully symmetrical scattering polarizations, where the polarizations of
the incident and scattered light are perpendicular to each other, and 〈γk〉F S = 0, where 〈· · ·〉F S

stands for the average over the Fermi surface.
The Raman spectral density, which is proportional to the dissipation rate, is related by the

fluctuation-dissipation theorem to the imaginary part of Raman susceptibility χ0(�) [9]:

ρ(�) = A[nB(�) + 1]χ ′′
0 (�), (2)

where nB(�) = 1/[exp(�/T ) − 1] is the Bose function. A is a constant that depends
on many factors which can vary from one experiment to another, giving the reason for the
typical presentation of ρ(�) in arbitrary units. The most important factor in equation (2)
is χ ′′

0 (�), which can be extracted from ρ(�)—albeit, typically, in arbitrary units, too. The
Feynman graph for zero-momentum Raman polarizability is shown in figure 1. In the non-
fully symmetrical scattering channels, the renormalization of the Raman vertex by isotropic
impurity scattering assumed here and the vertex corrections arising due to screened Coulomb
interaction vanish. The electron Green function in the diagram in figure 1 has the Matsubara
form:

G(εn, ξ) = 1

iεn − vFξ + i/2τ sgn(εn)
, (3)

where εn = πT (2n + 1) is the fermionic Matsubara frequency, T is the temperature, and
ξ = k − kF . In the non-fully symmetrical Raman scattering channels, the spectral density of
scattered light at � � T is given by [2]

ρ(�) = NF 〈γ 2
k 〉F S

�τ

1 + (�τ)2
, (4)

where NF is the density of states at the Fermi level. Despite the broken translational symmetry
due to the finite electron free path �, finite-momentum excitations are not caught by this
diagram. We shall consider another kind of Raman process, where the finite-momentum
excitations appear in the final state. The total Raman susceptibility is the sum of two terms:
χ(�) = χ0(�) + χQ(�), where χQ(�) is the contribution of finite-Q excitations. The
corresponding Raman process shown in figure 2 can be described as follows. A virtually excited
electron creates the real electron–hole pair due to the interaction between the particles [10].
The momentum of the virtually excited electron relaxes due to the interaction with impurities
in such a way that the momentum of the electron–hole pair is compensated by the momentum
transferred to the crystal. Since the impurity scattering is elastic, no excitation additional to
the real electron-pair energy transfer to the crystal occurs. At this point we mention three
other physical effects, which have features in common with the finite-momentum Raman
scattering. First, the process is analogous to the Mössbauer effect where the momentum of
a γ -photon is transferred to the whole crystal but its energy remains constant because of the
large crystal mass. Second, the process of finite-momentum excitations is a many-body effect
analogous to the well-known shake-up process in the atomic shells. In the shake-up process
the energy is redistributed between the states due to Coulomb interaction between electrons,
and the final excited electronic state arises due to this interaction [11]. The comparison of
the conventional Raman process and the process involving the electron–electron interaction
is shown in figure 3. Third, the physics of the finite-momentum Raman process is analogous
(but, of course, not identical) to the physics forming the inelastic relaxation rate of electrons
τ−1

ee due to the interaction between them. This process is shown in figure 4 where the energy of
the electron near the Fermi level relaxes due to the excitation of the low-energy electron–hole
pair moving in the random field of impurities U(r) [6]. The Raman intensity corresponding
to the process shown in figure 1 is proportional to the conversion rate of the initial photon
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Figure 1. The Feynman graph for the zero-momentum Raman scattering. Double wavy lines
correspond to the external perturbation, with white ellipses corresponding to the Raman vertex γk .
Solid curves are the electronic Matsubara Green functions with momentum k. ωm = 2πT m and
εn = πT (2n + 1) are the bosonic and the fermionic Matsubara frequencies, respectively.

Figure 2. The Feynman graph for the finite-momentum Raman scattering. The grey rectangles
correspond to the elastic momentum transfer between left (subscript l) and right (subscript r)
shoulders of the diagram. The left and right Matsubara energies are defined as εl = πT (2nl + 1)

and εr = πT (2nr + 1). The dashed lines connecting the white circles with the crosses inside
correspond to scattering of electrons by impurities. The grey triangles show the renormalization
by impurities. The simple wavy lines present the screened Coulomb interaction.

field in the zero-momentum electronic excitations and scattered photons, whereas the graph
is figure 2 corresponds to the conversion in the finite-momentum excitations and scattered
photons. This type of conversion arises due to the interaction between electrons. The role
of electron–electron interaction in the Raman process is twofold: it changes the spectrum of
carriers and leads to the finite-momentum excitations. We shall be interested in the second
effect only.

3. Feynman graph calculations and results

Two main contributions related to finite-momentum excitations are the diffuson χD(ωm)

and Cooperon χC(ωm), with graphs where a ladder (non-crossing impurity lines) and a fan
(maximally crossed impurity lines) are inserted in the cross-section for the real excitation, as
shown in figure 2—that is, χQ(ωm) = χD(ωm) + χC(ωm). The interaction responsible for the
excitation of the final-state (real) electron–hole pair is the screened Coulomb potential taken
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Figure 3. (a) The conventional Raman process; (b) the Raman process analogous to the shake-
up process. The electronic states shown in the figure are in the random field of impurities, and,
therefore, are not characterized by a well-defined momentum. |i〉, | f 〉, and | j〉 correspond to initial,
final, and intermediate states, respectively. All intermediate states with photoexcited electrons in an
upper band are virtual. The transition between | j〉 and | j ′〉 states in (b) occurs due to the screened
Coulomb interaction. Bold electron level lines show the Fermi energy.

Figure 4. The Feynman graph for the contribution of the electron–electron interaction in the
electron self-energy �(k, ε) in a metal with impurities, �′′(k, ε) ∝ 1/τee(ε). The grey triangle
and half-circles show the renormalization by impurities. This contribution can be safely neglected
in the calculation of the zero-momentum Raman response, since for any realistic system parameters
1/τee(ε ∼ 1/τ ) � 1/τ [6].

within the random-phase approximation:

V (Q, ωm) = V0(Q)

1 − V0(Q)D(Q, ωm )
, V0(Q) = 4πe2

Q2
, (5)

with the square of the electron charge e2 renormalized by the dielectric constant ε. The
density–density correlation function D(Q, ωm) has the form

D(Q, ωm ) = NF

[
ωmτ

ξv

1 − ξv

− 1

]
, (6)

with a parameter which corresponds to the impurity renormalization of the vertex in the ladder
approximation:

ξv = i

2Q�
ln

z1 + vF Q

z1 − vF Q
, (7)

where z1 = i(1/τ + ωm). To obtain the susceptibility χQ(ωm), we integrate over the momenta
of intermediate states and perform the summation over the intermediate Matsubara parameters
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nl and nr in the outer loops corresponding to the virtual excitations coupled to the light via
the non-fully symmetrical Raman vertex in figure 2, and n, which corresponds to the real
excitation. After the integration, the result for the diffuson contribution has the form

χD(ωm) = T 2 i

vF
〈U 2(r)〉NF 〈γ 2

k 〉F S

∫
dQ

(2π)2
Q2 V (Q, ωm)V ∗(Q, ωm)

(1 − ξv)2
D(Q, ωm )

×
∫

dθ sin θ

∫
dK

2π
K

nl ,nr =−1∑
nl ,nr =−m

D(z1, z2; K ,Q)

1 − ξrn
, (8)

where K = |pl −pr |, with pl and pr shown in figure 2, 〈U 2〉 = 1/π NFτ is the average square
of the random potential, θ is the angle between (pl + pr )/2 and Q, and the parameter for the
rung of the ladder

ξrn = i

2K�
ln

z1 + z2 + �K

z1 + z2 − �K
, (9)

where z2 = i(εr − εl). The ladder diagrams give the factor

D(z1, z2; K ,Q) = 2

z1[z2
1 − �2

Q]

{
1

z1 + 2�Q

ln
(z2 − �Q + �K )(z2 + z1 + �Q − �K )

(z2 − �Q − �K )(z2 + z1 + �Q + �K )

+
1

2z1
ln

(z2 + z1 + �K )(z2 − z1 − �K )

(z2 + z1 − �K )(z2 − z1 + �K )

}
, (10)

where �Q = vFQ and �K = vF K .
Since the summation for the Cooperon contribution starts with two crossed impurity lines

in the cross-section (see figure 2), the susceptibility contains one more ξrn-factor:

χC(ωm) = T 2 i

vF
〈U 2(r)〉NF 〈γ 2

k 〉F S

∫
dQ

(2π)2
Q2 V (Q, ωm)V ∗(Q, ωm)

(1 − ξv)2
D(Q, ωm)

×
∫

dθ sin θ

∫
dK

2π
K

nl ,nr =−1∑
nl ,nr =−m

C(z1, z2; K ,Q)
ξrn

1 − ξrn
, (11)

with

C(z1, z2; K ,Q) = 3z1 − �Q

4z2
1(z1 − �Q)2(2z1 − �Q)

ln
z2 − z1 + �Q + �K

z2 − z1 + �Q − �K

− 1

�Q

[
1

z2
1(z1 − 2�Q)

ln
z2 + �Q + �K

z2 + �Q − �K
− 1

z1(z1 − �Q)2
ln

z2 + �K

z2 − �K

]

+
1

�2
Q

[
1

4z2
1

ln
z1 + z2 + �Q + �K

z1 + z2 + �Q − �K
− 1

z1(2z1 − �Q)
ln

z1 + z2 + �K

z1 + z2 − �K

− 3�Q − z1

4(z1 − �Q)2(z1 − 2�Q)
ln

z1 + z2 − �Q + �K

z1 + z2 − �Q − �K

]
, (12)

where K = |pl + pr |, and θ is the angle between (pl − pr )/2 and Q.
Two dimensionless parameters determine the susceptibility χQ(ωm). The first one is

kF�, which depends on the disorder and shows how close the system is to the Anderson
transition [12]. The second parameter, κ2/k2

F , describes the Coulomb interaction, where the
Thomas–Fermi screening parameter κ2 = 4πe2 NF . The results of numerical calculations for
the diffuson and the Cooperon terms are presented in figure 5, where the analytical continuation
iωm → � + i0 was performed numerically with the Padé approximants [13]. As we can see in
figure 5, the contribution of finite-momentum excitations to the spectral density of scattered
light depends strongly on the Coulomb interaction between the electrons. The contribution of
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Figure 5. The contribution of the finite-momentum Raman process to the spectral density of the
scattered light for different kF � and κ2/k2

F . Left panel: the diffuson contribution; right panel: the
Cooperon contribution (in arbitrary units). Solid, dashed, and dash–dotted curves correspond to
κ2/k2

F = 4, κ2/k2
F = 2, and κ2/k2

F = 1, respectively. The temperature T = 0.015τ−1. The
contribution of the zero-momentum process χ0 in these units is �/(1 + �2) (see equation (4)).

the finite-momentum excitations increases with decrease of kF� when the system approaches
the metal–insulator transition of Anderson’s type.

The effect considered in this paper is rather weak, leading to a correction less than 0.1 of
the main zero-momentum contribution, since the localization effects are small in 3D metals
and semiconductors. (The contribution of more complicated diagrams, as is known from
the weak-localization theory, is small in comparison with this one, as it is proportional to
1/kF�.) However, it can be enhanced by the reduced dimensionality of the system, such as
in two-dimensional quantum wells and one-dimensional quantum wires, where localization
corrections to conductivity, �σ(ω) diverge as ln(ωτ) and 1/

√
ωτ , respectively. For these

systems the role of correlations and disorder is larger than for 3D metals. The Raman scattering
in these low-dimensional systems attracts a lot of experimental [14, 15] and theoretical
attention [16, 17], mainly concentrated on the spectra of one-particle and collective excitations.
The role of disorder in Raman scattering in low-dimensional systems still requires additional
study. It is possible that properties of the Raman scattering in these systems that are not yet
well understood can arise due to disorder [15], which causes localization, thereby enhancing
the role of finite-momentum excitations. This problem remains to be investigated.

To conclude, we have considered Raman-active finite-momentum excitations in non-fully
symmetrical scattering channels. These excitations arise due to the Coulomb interaction
between the electrons. The contribution of these excitations is small in the range of frequencies
described by the conventional model of the Raman scattering in metals with impurities [2].
Their role can be enhanced in low-dimensional systems such as two-dimensional electron gases
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and quantum wires, where electron–electron interaction and disorder play a more important
role than in 3D metals and semiconductors.
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